
Assessing Computational Thinking in CS Unplugged
Activities

Brandon Rodriguez, Stephen Kennicutt, Cyndi Rader, and Tracy Camp
Division of Computer Science

Colorado School of Mines, Golden, CO, USA
brandonrrodriguez@gmail.com, stephen.kennicutt@gmail.com, crader@mines.edu,

tcamp@mines.edu

ABSTRACT
Computer Science (CS) Unplugged activities have been de-
ployed in many informal settings to present computing con-
cepts in an engaging manner. To justify use in the class-
room, however, it is critical for activities to have a strong
educational component. For the past three years, we have
been developing and refining a CS Unplugged curriculum
for use in middle school classrooms. In this paper, we de-
scribe an assessment that maps questions from a compre-
hensive project to computational thinking (CT) skills and
Bloom’s Taxonomy. We present results from two different
deployments and discuss limitations and implications of our
approach.

CCS Concepts
•Social and professional topics→Computational think-
ing; Student assessment; K-12 education;

Keywords
Assessment, Computational Thinking, CS Unplugged

1. INTRODUCTION
Recent initiatives have called for more computer science

education at all levels from kindergarten through high school
[3]. The International Society for Technology in Education
(ISTE) 2016 standards for students include Computational
Thinking (CT) as one of the core competencies to thrive
in a technological world [2]. Since the term “Computational
Thinking” was coined in 2006 by Jeanette Wing [20], numer-
ous researchers have proposed methods to inject CT into the
classroom (e.g., [11]). One potential approach is to utilize a
set of activities known as CS Unplugged [1, 6].

CS Unplugged activities were developed to encourage in-
terest in computer science. The activities are kinesthetic,
engaging, and accessible for students without a computer or
typing skills. Studies have shown that CS Unplugged activ-
ities can stimulate interest in Computer Science when used

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE ’17, March 08-11, 2017, Seattle, WA, USA
c© 2017 ACM. ISBN 978-1-4503-4698-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3017680.3017779

in a variety of settings [7]. An analysis based on Bloom’s
taxonomy, however, showed that the original activities were
not suitable as standalone teaching units in middle school
classrooms [17]. Similar concerns have been expressed re-
garding the use of CS Unplugged activities in high school
[8]. By embedding the activities into a traditional lesson,
which included additional worksheets and discussion, the
authors of [17] showed that Unplugged activities could be
as effective as alternate methods for teaching fundamental
computing concepts such as binary numbers, binary search,
and sorting networks [18].

Over the last three years, our research team has modi-
fied and enhanced 10 of the CS Unplugged activities for use
in middle school classrooms. Since classroom time is ex-
tremely valuable, it is imperative for us to illustrate that
students participating in the activities are learning compu-
tational concepts. In this paper, we present an assessment
strategy based on comprehensive projects that incorporate
topics from multiple Unplugged activities.

2. RELATED WORK
It took several years and much discussion for the comput-

ing education community to reach consensus about what
categories of problem solving fit under the umbrella of CT.
More recently, researchers have been proposing techniques
to measure CT skills. Since CT emphasizes processes over
facts, and open-ended solutions rather than exact answers,
developing an effective assessment strategy is not trivial.

One common technique to assess CT is to analyze pro-
grams created by students. This approach was used by the
researchers who developed the Agentsheets visual program-
ming environment [4]. The team analyzed the rules stu-
dents used in their programs to uncover nine Computational
Thinking Patterns, which are constructs students use in pro-
gramming games that can also be applied to simulations.
They have developed an automated tool for Computational
Thinking Pattern Analysis that provides visual feedback re-
garding the extent to which students’ artifacts incorporate
the desired computational thinking patterns [10].

A related strategy is to have students complete assess-
ment tasks in a specific language. Werner et al. designed an
assessment in Alice that consisted of three tasks [19]. They
related these tasks to two aspects of CT: thinking algorith-
mically and making effective use of abstraction and mod-
eling. The tasks were also associated with comprehension
(i.e., modifying an existing program), design, and problem
solving. The authors noted that it was important for the
assessment tasks to use language that was consistent with

501

the game characters. We have also modeled our assessments
to have brief “stories” similar to the Unplugged activities.

Some researchers have noted that programs should not
be the only tool used to evaluate students’ understanding.
Grover et al. argue that multiple forms of assessment are
needed to effectively evaluate CT [9]. In addition to using
rubrics to score students’ open-ended projects, this team
reused quiz questions from the Israel National Exam to pro-
vide an objective measure of students’ comprehension of al-
gorithmic flow of control in Scratch.

SRI International and the Educational Testing Service
(ETS) have suggested an assessment paradigm based on
Evidence-Centered Design, or ECD. ECD assessments an-
swer the questions “What skills should be assessed?” and
“What student performances reveal those skills?” ECD ar-
rives at an answer to these questions by first identifying the
focal knowledge, skills, and attributes (FKSA) for the do-
main. Once the CT practices FKSA have been identified,
they are mapped to specific curricular units and potential
work products that can be scored to provide evidence that
students have met the learning objectives [12, 16].

The Bebras International Contest on Informatics and Com-
puter Fluency (Bebras) is a set of computation-related chal-
lenges that embody several components of CT [13]. Al-
though not affiliated with CS Unplugged, the Bebras ac-
tivities can also be used without a computer.

3. COMPREHENSIVE PROJECT ASSESS-
MENT

Designing the assessments to be engaging for students
(i.e., not another standardized multiple choice test) is an
important step for keeping students interested in CT, and
helps broaden participation. Drawing upon ideas presented
in [12, 13, 16], our assessment approach relies on a compre-
hensive final project that presents a series of problems that
are variations of the Unplugged activities. The questions are
intentionally open-ended so as not to directly lead students
to a desired outcome.

3.1 Project Description
Two versions of our final project were developed for use

in our study design. The two projects were designed to be
isomorphic, such that a concept tested by one question in
the first project would be tested in a similar fashion by one
question (a different question) in the second project. In
this way, students would not become overly familiar with
the wording or context of one version of the problem, and
write down a “remembered” solution when completing the
second project. Furthermore, each question was designed to
be completed independently of all other questions. Question
orthogonality allowed students who were unable to complete
a problem to advance to another part of the project. Each
project had its own story or theme, presented as a challenge
for the students to solve. In the first project version, which
will be called Pets, the goal was to determine which animal
got into the cookie jar. The second project version, referred
to as Carney, was carnival themed, and had students use
clues from various Unplugged types of problems to solve the
murder of a carnival employee.

3.2 Project Questions
The comprehensive project included six questions. A rubric

was created for each question. Since the entire project needed

to be completed within one 50-minute class period, the ques-
tions typically did not ask students to show their work or
explain their reasoning. The rubrics therefore included only
three levels: Proficient, Partially Proficient, and Unsatis-
factory. In determining the proficiency levels, students who
scored Proficient arrived at the correct answer; Partially
Proficient arrived at an incorrect answer, but one which the
evaluators could understand (i.e., student was on the right
track but had a clear misconception or made a computa-
tional error); and Unsatisfactory included responses where
the student did not attempt the problem or where the an-
swer was blatantly incorrect.

The questions are listed below, including a brief descrip-
tion of the corresponding CS Unplugged activity and the
requirements for an answer to be scored as Proficient or
Partially Proficient (all other answers would be scored as
Unsatisfactory).

Character Encoding / Binary Numbers. In the Par-
ity & Error Detection lesson, students convert binary num-
bers to letters and use parity bits to identify errors. For
this final project question, students were given a list that
mapped uppercase letters to decimal numbers. We wanted
to ensure the binary numbers students had to convert were
simple, so our encoding scheme mapped A = 1, B = 2, etc.
Students were asked to decode a word consisting of six 5-bit
numbers. Solving this challenge required students to a) rec-
ognize that the five-bit codes were in binary, b) remember
how to convert from binary to decimal, and c) understand
that this decimal number could be used to look up a letter.
Students were rated as Proficient if they correctly converted
all 5 letters or Partially Proficient if they decoded some but
not all the letters correctly.

Binary Search. The Binary Search lesson begins with
a search on an unsorted list, followed by a whole class dis-
cussion of binary search and a worksheet to reinforce the
concept. The related Pets question described a scenario in-
volving a row of shoes placed in order by shoe size. Students
were asked for the maximum number of shoes that Delilah
the dog would need to dig up to find the desired shoe. The
Carney question was similar but related to books sorted al-
phabetically. Solving this challenge required students to a)
recognize that a binary search could be used and b) perform
the necessary divisions to determine how many shoes would
need to be viewed (middle school students have not stud-
ied logarithms, so continuous dividing in two would be the
strategy). Students were rated as Proficient if they gave a
correct answer or Partially Proficient if they were off by 1.

Minimal Spanning Tree (MST). The Muddy City Un-
plugged lesson challenges students to connect all houses in a
village using the minimum number of stones. The Pets MST
question presented students with a connected, weighted graph
and asked students to shade the tunnels that would be needed
(i.e., the edges) to minimize the number of feet required to
connect all the ant hills (i.e., nodes). The Carney project
was similar but used a railroad context, where the goal was
to shade the tracks that would be needed to connect all
cities where the carnival visited using the fewest miles of
track. Solving this challenge required students to a) rec-
ognize the type of problem and b) remember/apply an ef-
fective algorithm (Kruskal’s was covered in the lesson) to
solve the problem. Students were rated as Proficient if they
constructed a correct MST or Partially Proficient if they
created an MST with only 1 or 2 additional edges.

502

Finite State Automata (FSA). The Unplugged les-
son that covers FSA first has students discover the rules
that govern interactions between a fruit vendor and cus-
tomer, followed by a lecture that introduces FSA and two
worksheets to reinforce interpreting and creating FSAs. The
Pets FSA problem provided students with sentences that de-
scribed the set of rules Delilah the Dog followed to fill her
day. States were highlighted in bold and events were un-
derlined. The first FSA question asked students to organize
the events to see the possible schedules (FSA Creation). To
avoid biasing the results, the wording of the question did
not mention FSAs. The second question (FSA Usage) re-
quired students to review three possible schedules and iden-
tify which one(s) were correct. The Carney questions were
similar, but students were given a set of rules for a robotic
fortune teller. Solving this problem required students to a)
recognize that FSA would be an effective representation, b)
remember the “syntax” for creating an FSA, and c) under-
stand how the FSA can be used to identify valid sequences
of events. Students rated as Proficient were able to create
a valid FSA (part 1) and identify two valid sequences (part
2). A Partially Proficient rating was assigned for part 1 if
students made a recognizable attempt at an FSA but had
errors (e.g., extra or missing transitions) and for part 2 if
students identified one of the two valid sequences.

Binary Numbers. The Binary Numbers lesson uses flip
cards to teach students how to convert between binary and
decimal. Since the character encoding question encapsulated
both binary number conversions and character encoding, an
additional question was used to test just binary numbers.
This question listed locations that were labelled with a bi-
nary number, e.g., Couch = 01111, and characters that were
labelled with a decimal number, e.g., Larry 10, Buzzy 15,
etc. Students were required to a) convert each binary num-
ber to decimal and b) match the decimal number to the
correct animal/person. Students were rated as Proficient if
they correctly identified all 6 locations and Partially Profi-
cient if they identified at least 3.

3.3 Project Question Refinements
The pilot version of these projects, as described in [14],

consisted of five questions. The pilot test results indicated
that the general approach of using a comprehensive project
had promise, but highlighted a number of issues with the
specific questions, which we fixed for the following deploy-
ments and present here as lessons learned.

Extra hints. To avoid frustrating the students who had
not seen any CS Unplugged activities, the binary encoding
question for the pilot pretest contained explicit hints that
were not included in the posttest. The results therefore
showed a non-significant decline from pretest to posttest.

Confusing instructions. Several questions were revised
due to confusing format or instructions: For example, the
MST problem had a hint to start with a specific node, which
caused some confusion as a few students interpreted this as a
traveling salesman problem. The wording was also modified
to emphasize that the goal was to minimize the number of
feet (of tunnels or tracks), not necessarily the number of
edges.

Consistent format. The FSA challenge highlighted states,
but did not specify transitions/events in a clear fashion. The
questions were changed to match the format of the work-
sheets used during the lesson.

Increased complexity. The decoded words in the posttest
version of the Character Encoding problem were represented
as horizontal and vertical lines, rather than 0s and 1s (e.g.,
“||-|”rather than“1101”). Thus, the Carney version included
an additional level of abstraction not present in the Pets ver-
sion.

Unrelated question. The pilot included an optimiza-
tion problem that was inspired by a question from the Be-
bras challenge. This question did not relate specifically to
any of the Unplugged activities and was therefore removed
after the initial pilot.

Lesson revisions. In addition to issues with specific
questions, analyzing the results also identified concerns with
several of the Unplugged activities. For example, the FSA
activity jumped too quickly into the “create” mode, which
was the skill tested on the comprehensive project. The lesson
plan was revised to walk students through the progression
of understanding the FSA notation, using an existing FSA,
then creating their own FSA based on a set of rules. Similar
revisions were made to a number of the lesson plans.

3.4 Bloom’s Taxonomy and Computational
Thinking

Thies and Vahrenhold [17] noted that the original CS Un-
plugged activities tended to fall in the lower spectrum of
Bloom’s taxonomy. To be suitable for middle school class-
rooms, they recommended that additional depth be incor-
porated into the activities. This same critique can be ap-
plied to assessments. We therefore mapped Bloom’s levels of
thinking to our projects. This update was done in conjunc-
tion with two teachers from our deployment school. Teachers
individually evaluated the problems before discussing and
justifying their choices. The projects were found to demon-
strate all levels of Bloom’s Taxonomy (creating, evaluat-
ing, analyzing, applying, understanding, and remembering),
which make them better poised to measure middle school
learning than if they were unilaterally located in the bot-
tom tiers.

After classifying the problems per Bloom’s Taxonomy,
CT pillars were mapped to each problem. CT encompasses
the concepts of data representation, decomposition, pattern
recognition, abstraction, and algorithmic thinking. Five
members of our research group independently categorized
the project problems before aggregating the results. All five
members were familiar with the principles of CT as well as
the CS Unplugged activities used in the projects. Dr. Tim
Bell, the creator of the original CS Unplugged activities, also
provided feedback on the project assessment, including map-
ping each question to its CT skills [5]. As shown in Table 1,
the project assessments were judged to exhibit three of the
five CT skills. Of the remaining skills, pattern recognition
was assessed via worksheets the students completed during
the binary numbers and cryptology activities [15]. Problem
decomposition was not a focus of any of our assessments.

4. DESIGN STUDY
The results presented in this paper are from two deploy-

ments at two different times. Both deployments were done in
7th-grade classrooms and included the comprehensive project
plus six CS Unplugged activities. The activities were chosen
based on what we believe to be the most appropriate con-
tent for a 7th-grade audience. The first deployment, from
fall 2015, included a full study design where classes were sep-

503

chris
Highlight

Table 1: Each topic of the comprehensive project along with its associated “story” for the Pets and Carney
final versions, the CT skills, and the categories for Bloom’s taxonomy.

Topic Pets Story Carney Story CT Skills Bloom’s
Character encoding Melanie Mouse secret message Detective secret message Data representation Remembering

Understanding
Search Delilah Dog shoe search Odin book search Algorithmic Thinking Evaluating
MST Tunneling ants Railroad Abstraction Applying

Algorithmic Thinking
FSA Delilah Dog schedule Fortune telling robot Abstraction Creating

Analyzing
Binary Numbers Animals hiding Carney workers hiding Data representation Remembering

Understanding

arated into a retention group and a knowledge progression
group (pretest/posttest comparison). One graduate student
researcher taught all lessons. The second deployment, from
spring 2016, assessed results only based on knowledge pro-
gression. Lessons were taught by a mix of graduate and
undergraduate student researchers. Although the spring
2016 deployment results are generally better, due to im-
provements in the activities and/or assessment questions,
we include a few results from the fall 2015 pilot primarily to
highlight retention.

Group 1 completed both versions of the project after the
students learned the CS concepts (see Figure 1). The stu-
dents completed their normal classroom assignments, not
related to any of the CS Unplugged activities, during the six-
day period between completing the first and second projects.
Results from this group are presented below as the Retention
study (see Section 5.1).

Figure 1: The fall 2015 deployment schedule. Each
column is one school day, and each letter in a column
represents a unique activity being deployed. Bolded
columns signify dates when students completed a
comprehensive project.

Group 2 completed one project before seeing any of the
CS Unplugged activities, and completed the second project
directly after seeing the activities. The spring 2016 de-
ployment matches group 2, as students completed the Pets
project as a pretest, followed immediately by the six activ-
ities and the Carney project as a posttest. Results from

the spring deployment, which included 121 students, are
presented below as the Knowledge Progression study (see
Section 5.2).

5. RESULTS
Using the rubrics described in Section 3, every problem

was individually scored as Proficient, Partially Proficient or
Unsatisfactory by two researchers. Disagreements on any
score were resolved by having both researchers score the
question together, and then editing the rubrics to better
document any edge cases.

5.1 Retention Study
In this section we address the question “Do students re-

tain information from the CS Unplugged activities after a
delay?” Figure 2 shows the change in proficiency in Group
1 between the Pet project (posttest for Group 1) and the
Carney project (retention test). As expected, the number of
students attaining proficient scores was generally lower on
the retention test. According to a χ2 test, however, none of
the differences are significant. Although six days is clearly
not long enough to measure long-term retention, we are en-
couraged that many students remembered at least some of
the concepts they learned via the Unplugged lessons (i.e., it
is not all just fun).

Figure 2: Chart of proficient scores in the posttest
and retention test. Scores from fall 2015 deploy-
ment.

5.2 Knowledge Progression Study
In this section, we answer the question“Are students learn-

ing information from the CS Unplugged activities?” The re-

504

sults presented here are based on the final version of the
comprehensive projects.

Figure 3 shows the percentage of students who achieved
proficiency in each problem of our final projects. A critical
first step in educational research is to ensure that assess-
ments measure the effect of an intervention and not prior
knowledge. Table 2 shows that all six problems show sig-
nificant increases from pretest to posttest, based on the χ2

test.

Figure 3: Chart of proficient scores in the pretest
and posttest test. Scores from spring 2016 deploy-
ment.

In all of the project problems, approximately 50% (or
higher) of students who had seen the activities reached pro-
ficiency in the posttest. Student performance was highest on
the two questions that involved binary number conversion,
with approximately 80% of students achieving the Proficient
level. Most topics in our study are covered in just one 50-
minute session. The one exception is binary numbers, which
are reinforced when students learn about ASCII encoding
schemes. This second exposure may help to explain why a
higher percentage of students reached the Proficient level
for these questions.

Most students (70%) were also able to successfully iden-
tify the edges that were needed to create a minimal spanning
tree. This result is encouraging, because the pretest results
show that, without knowing a strategy, most students could
not successfully complete the task. But, after being intro-
duced to a fairly sophisticated algorithm (Kruskal’s), stu-
dents were able to recognize a similar problem and solve it
successfully. Note that we have no way to know whether
students identified as Proficient actually followed Kruskal’s
algorithm. In fact, we believe that memorizing the details of
one algorithm is not as important as being able to system-
atically approach a problem of the same type. It seems that
students who reached the level of Proficient on this problem
have made progress toward that goal.

We are also encouraged by the fact that close to 50% of
the students were able to generate an FSA drawing based
on a set of rules. As shown in Figure 4, an additional 17%
were ranked as Partially Proficient, meaning that they used
some of the boldface events and states in a diagram, but did
not create a complete FSA.

The number of Proficient scores on the binary search
problem is only around 50%. As part of the binary search
lesson, students are asked to perform a binary search on a
set of ordered items. The comprehensive project question

Table 2: Results of a χ2 test for each lesson deployed
in spring 2016. All results are significant.

Activity χ2 Value
MST 2.27e-16
FSA Construction 3.63e-20
FSA Validation 1.29e-4
Binary Character Encoding 2.44e-27
Binary Search 1.17e-3
Binary Number Conversion 1.4e-25

Figure 4: Results from our deployment of the FSA
lesson plan in spring 2016.

is more abstract because students are not explicitly asked
to perform a binary search. Instead, students must recog-
nize that a binary search could be used, then think about
how to determine the number of comparisons. Although
counting the number of comparisons was illustrated during
the lesson, students completing the worksheets were never
explicitly asked to do that calculation. It is possible that
this question is not developmentally appropriate (i.e., too
challenging) for middle school students.

In analyzing the incorrect answers provided for this ques-
tion, 24 students (19.8%) gave an answer of 15 or 16 com-
parisons (for a list of 16 items). These students evidently
thought that it would be necessary to look at every item
to find the desired one. Although they missed the idea of
binary search, the students appear to be thinking about the
requirements of the problem. Ten students (8.3%) listed the
answer as 8. These students may have remembered at least
some ideas from the lesson (i.e., halving) but did not re-
call the entire process. For the remaining answers (23.1%),
it was not clear what the students were thinking. These
results are shown in Table 3.

6. DISCUSSION
When using activities designed to promote enthusiasm for

computing, such as CS Unplugged, it’s important to ask a)
whether students are actually learning the intended concepts
and b) whether they will remember anything from the lesson
other than whether they did (or did not) enjoy the activity.
In this paper, we have attempted to answer these questions

505

Table 3: Scoring breakdown of the binary search
problem from the spring 2016 deployment.

Comparisons # Students
4 or 5 (correct) 59
15 or 16 (linear search) 24
8 (cut in half once) 10
3 or 6 (potentially off by 1) 15
0, 2, 11, 12, 13, 14, 26 13

via comprehensive projects that relate specifically to five
Unplugged activities (the sixth activity did not have an as-
sociated question and is, therefore, not discussed here). CT
skills are fairly broad, so it is clearly not possible to claim
that students have mastered a particular CT component
based on just one assessment. Our approach uses assessment
questions that are similar in style to worksheets performed
as part of the lesson. We make no claims, for example, that
performing well on the binary character encoding, which we
have mapped to the CT skill of data representation, will re-
sult in students understanding a completely different data
representation task (e.g., images).

Furthermore, it can be difficult to map proven computer
science techniques to specific CT areas. For example, our
team assigned creation and validation of FSA to the CT skill
of abstraction, but it could be argued that creating a FSA
should be categorized as algorithmic thinking. With the in-
creased emphasis on K-12 computing, it is critical that the
community develop assessments so that teachers, parents,
and administrators can understand what students are learn-
ing. CT skills provide a valid framework for this effort, but
forcing every assessment of computing skills to fit neatly
within CT may be counterproductive.

Lesson plans for all Unplugged activities described in this
paper are available on our website [1]. The authors are
happy to share final versions of the Pets and Carney projects
upon request.

7. ACKNOWLEDGMENTS
The authors would like to thank the CS Unplugged team

at Mines (Nicholas Dyer, Shelly Konopka, Mykel Allen, Vy
Ta and Martin Kuchta) for their assistance in refining, de-
ploying and assessing the CS Unplugged activities. This
material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers CNS-1240964 and
DGE-0801692. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

8. REFERENCES
[1] CS Unplugged at Mines.

http://toilers.mines.edu/CS-Unplugged. Retrieved 11
December 2016.

[2] ISTE standards for students. http://www.iste.org.
Retrieved 11 December 2016.

[3] Computer science for all, 2016. http://whitehouse.gov.
Retrieved 11 December 2016.

[4] A. R. Basawapatna, K. H. Koh, and A. Repenning.
Using scalable game design to teach computer science
from middle school to graduate school. In Conference

on Innovation and Technology in Computer Science
Education, Bilkent, 2010.

[5] T. Bell. Personal Communication, October 2015.

[6] CS Unplugged. About CS Unplugged.
http://csunplugged.org. Retrieved 11 December 2016.

[7] P. Curzon, Q. Cutts, and T. Bell. Enthusing &
inspiring with reusable kinaesthetic activities. In Proc.
14th Conference on Innovation and Technology in
Computer Science Education, Paris, France, July 2009.

[8] Y. Feaster, L. Segars, S. Wahba, and J. Hallstrom.
Teaching CS Unplugged in the high school (with
limited success). In Proc. 16th Conference on
Innovation and Technology in Computer Science
Education, Darmstadt, Germany, June 2011.

[9] S. Grover, S. Cooper, and R. Pea. Assessing
computational learning in K-12. In Conference on
Innovation & Technology in Computer Science
Education, Uppsala, 2014.

[10] K. Koh, H. Nickerson, A. Basawapatna, and
A. Repenning. Early validation of computational
thinking pattern analysis. In Proc. 19th Conference on
Innovation and Technology in Computer Science
Education, Uppsala, Sweden, June 2014.

[11] I. Lee and K. Apone. Integrating computational
thinking across the K-8 curriculum. ACM Inroads,
5(4):64–71, December 2014.

[12] R. J. Mislevy, R. G. Almond, and J. F. Lukas. A brief
introducation to evidence-centered design. Technical
report, Princeton University, 2003.

[13] W. Pohl and V. Dagiene. Bebras international contest
on informatics and computer fluency.
http://bebras.org. Retrieved 11 December 2016.

[14] B. Rodriguez. Assessing computational thinking in
Computer Science Unplugged activities. Master’s
thesis, Colorado School of Mines, Golden, 2015.

[15] B. Rodriguez, C. Rader, and T. Camp. Using student
performance to assess CS Unplugged activities in a
classroom environment. In Innovation and Technology
in Computer Science Education, Arequipa, July 2016.

[16] D. W. Rutstein, E. Snow, and M. Bienkowski.
Computational thinking practices: Analyzing and
modeling a critical domain in computer science
education. In American Educational Research
Association, Philadelphia, 2014.

[17] R. Thies and J. Vahrenhold. Reflections on outreach
programs in CS classes: Learning objectives for
“unplugged” activities. In Special Interest Group on
Computer Science Education, Raleigh, 2012.

[18] R. Thies and J. Vahrenhold. On plugging “unplugged”
into CS classes. In Special Interest Group on
Computer Science Education, Denver, 2013.

[19] L. Werner, J. Denner, and S. Campe. The fairy
performance assessment: Measuring computational
thinking in middle school. In Proc. 43rd ACM
Technical Symposium on Computing Science
Education, Raleigh, USA, February 2012.

[20] J. M. Wing. Computational thinking.
Communications of the ACM, 49(3):33–35, 2006.

506

